扫描视网膜,AI可知心脏病风险

瞄准气象服务这块“金牌”

陈明轩介绍,冬奥会气象保障服务需要0至10天内的高精度气象预报作为支撑,需要做到“定时、定点、定量”的气象预报,而在地形复杂山区的这种小尺度精准气象预报本身就是国际气象界的一道难题,既有的现代数值天气预报模型和传统的技术方法有时存在较大的误差,因此就需要借助人工智能技术和大数据技术,通过对海量的数值天气预报模型预报数据和大量的气象观测数据进行“再解读”,从而实现客观气象预报的“再订正”,提升冬奥气象预报的精准度

科技日报北京1月26日电 (记者张梦然)据最新一期《自然·机器智能》杂志报道,英国研究人员开发了一种人工智能(AI)系统,可通过分析在常规访问眼镜店或医院眼科时留下的眼部扫描数据,识别出心脏病发作高风险患者。该AI系统的识别准确率在70%—80%之间,可作为心血管疾病筛查的第二转诊机制。

视网膜微小血管的变化是更广泛的血管疾病,包括心脏问题的指标。在英国利兹大学领导的这项研究中,研究人员利用深度学习技术训练AI系统自动读取视网膜扫描数据,并识别那些在接下来的一年中可能会得心脏病的人。深度学习是一系列复杂的算法,使计算机能够识别数据中的模式并作出预测。

领导这项研究的利兹大学计算医学教授艾利克斯·弗兰吉说:“这项技术有可能彻底改变心脏病筛查。视网膜扫描相对便宜,并且在许多配镜服务中经常使用。作为自动筛查的结果,可将患病风险高的人转诊至专科进行治疗。”

冬奥会上的科技范儿

其中,北京体育大学牵头承担了“冬季项目运动员专项能力特征和科学选材关键技术的研究”任务,目前项目组已突破制约部分冬季项目运动员竞技表现能力提升的关键技术,应用人工智能技术实现了运动员技术战术数据实时反馈与评价,以集成创新为依托,创建以体能为核心、以冠军模型为目标、以智能和大数据等技术为手段的冬季项目运动员选拔、培养和训练监控方法体系

英国生物银行为这项研究提供了数据。在深度学习过程中,AI系统分析了5000多人的视网膜扫描和心脏扫描数据。AI系统确定了视网膜病变与患者心脏变化之间的关联。

一旦学习了图像模式,AI系统就可以仅通过视网膜扫描来估计左心室(心脏的四个腔室之一)的大小和泵送效率。心室扩大与心脏病风险增高有关。借助有关左心室估测大小及其泵送效率的信息以及有关患者年龄、性别等基本人口统计数据,AI系统可预测他们在接下来的12个月内心脏病发作的风险。

目前,只有在进行了超声心动图或心脏磁共振成像等诊断测试后,才能确定患者左心室的大小和泵送效率的详细信息。这些诊断测试通常很昂贵,而且只能在医院中使用,这使得医疗保健系统资源较少的国家的人们无法获得,在发达国家也增加了医疗保健成本和等待时间。

利兹大学英国心脏基金会心血管影像学教授、该研究论文的作者之一斯温·普雷恩说:“AI系统是解开自然界中存在的复杂模式的绝佳工具,而我们发现的与心脏变化相关的视网膜变化复杂模式,正是其中之一。”

元宇宙能过“能源关”吗

为创造堪比真实世界的沉浸感,元宇宙发展需要5G、人工智能、区块链、云计算、大数据、物联网、VR、AR等数字技术支持

原创文章,作者:APP软件开发,如若转载,请注明出处:https://www.yuanma666.com/archives/9748.html